Karen joined Itasca Australia in 2017, and with a background in marketing and process improvement, she provides administration support to the team and manages software sales for the region.
The Universal Distinct Element Code (UDEC) is a two-dimensional numerical program that simulates the quasi-static or dynamic response to loading of media containing multiple intersecting joint structures.
The discontinuous medium is represented as an assemblage of discrete blocks while the discontinuities are treated as boundary conditions between blocks. Large displacements along discontinuities and rotations of blocks can occur. UDEC utilizes an explicit solution scheme that can model complex, nonlinear behaviors.
Models may contain a mix of rigid or deformable blocks. Deformable blocks are defined by a continuum mesh of finite-difference zones, with each zone behaving according to a prescribed linear or nonlinear stress-strain law. The relative motion of the discontinuities is also governed by linear or nonlinear force-displacement relations for movement in both the normal and shear directions. Joint models and properties can be assigned separately to individual, or sets of, discontinuities.
Because UDEC is not limited to a particular type of problem or initial condition, it may be applied to a wide variety of physical behaviors or any case where an understanding of the two-dimensional response of such structures is needed. UDEC is capable of simulating a wide range of engineering and scientific analyzes including: stability analysis of jointed rock slopes or underground excavations; fluid or gas flow through jointed rock; stability of masonry structures, dams, and foundations; blasting, earthquakes, and microseismicity; among many more applications.
Optional features are specialized modules that can be added to UDEC at an additional cost for additional simulation tools.
Barton-Bandis Joint Analysis: The Barton-Bandis joint model utilizes a series of empirical relations for joint normal behavior and joint shear behavior based on the effects of surface roughness on discontinuity deformation and strength as described by Barton (1982) and Bandis et al. (1985).Creep Material Analysis: The creep option can be used to simulate the behavior of materials that time-dependent material behavior.
User-Defined Models (UDM): With this option, users may create their own contact or zone constitutive model for use in UDEC using C++ scripting.
Thermal Analysis: The thermal model simulates the transient flux of heat in materials and the subsequent development of thermally induced stresses. The heat flux is modeled by either isotropic or anisotropic conduction. Heat sources can be added and can be made to decay exponentially with time.
This website uses cookies to ensure you get the best experience on our website.
This policy applies to the site www.itasca.com.au (hereinafter the "Site").
A cookie is a small text file in alphanumeric format deposited on the hard disk of the user by the server of the Site visited or by a third party server (advertising network, web analytics service, etc.). When you log on to our Site, we may install various cookies on your device. The cookies we issue are:
In accordance with the regulations, cookies are kept for 13 months.
By browsing our site, you can click on the "social networks" buttons to consult our LinkedIn profile and our YouTube page. By clicking on the icon corresponding to the social network, the latter is likely to identify you. If you are connected to the social network during your navigation on our Site, the sharing buttons allow you to link the contents consulted to your user account. Google, through Google Analytics, places cookies and tracks the site's audience. We can not control the process used by third-party applications to collect information about your browsing on our Site. We invite you to consult their policy of protection of personal data to know their purpose of use and the navigation information they can collect.
When you visit our Site for the first time, a cookies banner will appear indicating the purposes of the cookies. Please note that further navigation on the Site is equivalent to giving your consent to the use of cookies by ITASCA AUSTRALIA. You can choose at any time to adapt the management of cookies according to your preferences, disable them or express a different choice via the means described below. If you refuse the use of cookies, you may no longer have access to a number of features necessary to navigate certain areas of our Site.
For the management of cookies and your choices, each browser offers a different configuration.
For Chrome:
For Internet Explorer 8:
For Internet Explorer 10 and 11:
For FireFox:
For Safari:
For Opera:
According to the GDPR, you have the right to access, rectify, oppose, delete and limit information from cookies and other tracers. You also have the right to withdraw your consent. For this, please contact [email protected].