Learning

Software Tutorials

Converting Plots to Data Files

Any model plot that you create interactively by adding plot-items and adjusting settings can be represented by an equivalent set of commands. This is useful should you want to include command-driven plotting in your modeling run.

Working with Email in Itasca Software

Learn how you can use commands and functions to send email messages and attachments via Itasca software. Use this capability to inform you when a model has finished running, a result is available (even attach a plot), or the model run is interrupted.

FLAC3D 7.0 Plot Range Tutorial

This tutorial will show how to create and manipulate plot range elements in FLAC3D. Each plot-item in a plot may have one or more range elements that shows the portion which lies within the defined range, while removing from view the portion of the plot-item that lies outside it. Plot-item ranges may also be copied and applied to other plot-items.

Technical Papers

Time-Dependent Behavior of Saint-Martin-La-Porte Exploratory Galleries: Field Data Processing and Numerical Modeling of Excavation in Squeezing Rock Conditions

Field monitoring programs (e.g., convergence measurements and stress measurements in the support system) play an important role in following the response of the ground and of the support system during and after excavation. They contribute to the adaptation of the excavation and support installation method and the prediction of the long-term behavior. In the context of the Lyon–Turin link project, an access gallery (SMP2) was excavated between 2003 and 2010, and a survey gallery (SMP4) has been excavated since 2017.

Use of a Chemical Transport Code for the Prediction of Gold Heap Leach Production

Itasca Denver, Inc., (Itasca) in conjunction with Newmont Mining Corporation (NMC) developed a numerical model to estimate gold (Au) production from NMC’s heap-leach operations.

Blast Movement Simulation Through a Hybrid Approach of Continuum, Discontinuum, and Machine Learning Modeling

This work presents a hybrid modeling approach to efficiently estimate and optimize rock movement during blasting. A small-scale continuum model simulates early-stage, near-field blasting physics and generates synthetic data to train a machine learning (ML) model. Key parameters such as expanded hole diameter, burden velocity, and gas pressure are obtained through the ML model, which then inform a discontinuum model to predict far-field muckpile formation. The approach captures essential blast physics while significantly accelerating blast design optimization.

Latest News
  • Itasca at Balkanmine 2025! Itasca is pleased to announce its participation in the Balkanmine 2025 Conference. Our experts Lauriane...
    Read More
  • Itasca has announced the release of FLAC2D v9 Itasca has announced the release of FLAC2D v9, revolutionizing the way we analyze and predict...
    Read More
  • 6th Itasca Symposium on Applied Numerical Modeling The next Itasca Symposium will take place June 3 - 6, 2024, in Toronto, Canada....
    Read More