Learning

Software Tutorials

MINEDW Tutorial (Part 4: Meshing)

In this tutorial we will go over meshing, from the creation of a 2D mesh and how to import it to MINEDW, to the inclusion of topography, layers, and pinch-outs to different areas of interest in the model.

Working with Building Blocks in FLAC3D 6 (Part 2)

This video demonstrates filling the empty space between key model elements and out to the far field boundary using Building Blocks in FLAC3D 6.

Using Python in FLAC3D 6

The Python programming language is embedded inside FLAC3D 6 and extended to allow FLAC3D models to be manipulated from Python programs. This webinar recording provides a brief introduction to Python scripting and includes many examples of using Python with FLAC3D.

Technical Papers

A DFN–DEM Multi‑scale Modeling Approach for Simulating Tunnel Excavation Response in Jointed Rock Masses

Based on the concept of the representative elementary volume (REV) and the synthetic rock mass (SRM) modeling technique, a DFN–DEM multi-scale modeling approach is proposed for modeling excavation responses in jointed rock masses. Based on the DFN models of various scales, equivalent rock mass properties are obtained using 3DEC SRM models. A tunnel excavation simulation using data from the Äspö TAS08 tunnel is conducted to demonstrate the applicability of the proposed multi-scale modeling approach.

Connectivity, permeability, and channeling in randomly distributed and kinematically defined discrete fracture network models

A major use of DFN models for industrial applications is to evaluate permeability and flow structure in hardrock aquifers from geological observations of fracture networks. The relationship between the statistical fracture density distributions and permeability has been extensively studied, but there has been little interest in the spatial structure of DFN models, which is generally assumed to be spatially random (i.e., Poisson). In this paper, we compare the predictions of Poisson DFNs to new DFN models where fractures result from a growth process defined by simplified kinematic rules for nucleation, growth, and fracture arrest.

The role of rock mass heterogeneity and buckling mechanisms in excavation performance in foliated ground at Westwood Mine, Quebec

Operations at Westwood mine in Quebec, Canada were temporarily halted in May 2015 after three large-magnitude seismic events occurred over two days. The mechanisms leading to these events, which caused severe damage to several accesses, were not well understood at first. This paper presents the key aspects of FLAC3D back-analysis modelling, which include (1) an anisotropic rock mass strength model with properties derived from field and laboratory strength testing, and (2) a scheme to account implicitly for the deconfinement that accompanies buckling around excavations.

Latest News
  • Itasca at Balkanmine 2025! Itasca is pleased to announce its participation in the Balkanmine 2025 Conference. Our experts Lauriane...
    Read More
  • Itasca has announced the release of FLAC2D v9 Itasca has announced the release of FLAC2D v9, revolutionizing the way we analyze and predict...
    Read More
  • 6th Itasca Symposium on Applied Numerical Modeling The next Itasca Symposium will take place June 3 - 6, 2024, in Toronto, Canada....
    Read More