Learning

Software Tutorials

Python and Pore Pressure Initialization

In this tutorial we will demonstrate how to map a random point cloud with pore pressure values onto the grid points of a FLAC3D model using python.

FLAC3D 7.0 Structured Mesh Tutorial

A tutorial showing how to create a structured mesh in FLAC3D 7.0 using the extruder pane.

Generate a Hybrid Mesh by Combining Block Ranger and GVol

This tutorial will demonstrate a method to create a hybrid mesh of tetrahedral zones to model the rock mass and hexahedral zones to model a concrete liner. Hexahedral zones for the liner are preferred in order to more accurately capture plastic strains in this region. The meshing is done by utilizing the Itasca Griddle volume mesher plug-in for Rhino 3D. Importing the final mesh into FLAC3D, for future finite volume modeling, is also demonstrated.

Technical Papers

Time-Dependent Behavior of Saint-Martin-La-Porte Exploratory Galleries: Field Data Processing and Numerical Modeling of Excavation in Squeezing Rock Conditions

Field monitoring programs (e.g., convergence measurements and stress measurements in the support system) play an important role in following the response of the ground and of the support system during and after excavation. They contribute to the adaptation of the excavation and support installation method and the prediction of the long-term behavior. In the context of the Lyon–Turin link project, an access gallery (SMP2) was excavated between 2003 and 2010, and a survey gallery (SMP4) has been excavated since 2017.

On the Density Variability of Poissonian Discrete Fracture Networks, with application to power-law fracture size distributions

This paper presents analytical solutions to estimate at any scale the fracture density variability associated to stochastic Discrete Fracture Networks. These analytical solutions are based upon the assumption that each fracture in the network is an independent event. Analytical solutions are developed for any kind of fracture density indicators.

Input to Orepass Design — A Numerical Modeling Study

Orepass design guidelines required for potentially continued mining at depth. Rock strength and stress state were validated through comparison with observed fallouts in orepasses and shafts and the optimal orientation and location of orepasses for future mining were determined.

Latest News
  • Itasca at Balkanmine 2025! Itasca is pleased to announce its participation in the Balkanmine 2025 Conference. Our experts Lauriane...
    Read More
  • Itasca has announced the release of FLAC2D v9 Itasca has announced the release of FLAC2D v9, revolutionizing the way we analyze and predict...
    Read More
  • 6th Itasca Symposium on Applied Numerical Modeling The next Itasca Symposium will take place June 3 - 6, 2024, in Toronto, Canada....
    Read More