Mr Lachenicht has 25 years’ experience in mining geomechanics ranging from consulting, research projects, studies to mine operational experience. Over the course of his experience, positions held include manager, senior geotechnical engineer, geotechnical superintendent and principal geotechnical engineer roles with associated levels of responsibility.
Lahars represent natural phenomena that can generate severe damage in densely populated urban areas. The evaluation of pressures generated by these mass flows on constructions (buildings, infrastructure…) is crucial for civil protection and assessment of the structures’ vulnerability. The existing tools developed to model the spread of flows at large scale in densely populated urban areas remain inaccurate in the estimation of mechanical efforts.
Itasca utilizes REBOP (Rapid Emulator Based On PFC) to simulate material drawdown within a block, panel, or sublevel cave mine by tracking the growth of draw zones (also called Isolated Movement Zones, IMZs) and corresponding fragmented rock flow associated with each drawpoint. The incremental laws governing IMZ growth and material movement in REBOP were derived on the basis of flow patterns observed in PFC3D and FLAC simulations of draw conducted by Lorig and Cundall (2000) and Pierce (2010) and in physical models conducted by a number of different researchers.
The key inputs to REBOP include fragment size distribution, initial and bulked porosity, friction angle and intact strength. The primary output from a draw analysis includes time- or tonnage-based histories of extracted ore grades and other rock properties, plots of material distribution above the drawpoints, and three-dimensional visualization of the movement and extraction zones associated with each drawpoint.
Secondary fragmentation, rilling, fines migration, and drawpoint hangups can be accounted for within REBOP simulations. The rilling logic and the ability to represent complex surface topography allow simulation of the impacts of local or large-scale failures in overlying open pit slopes or weak overburden. In addition to estimating recovery and dilution, the fragmentation exiting drawpoints can be tracked to predict hangup potential and associated drawpoint availability. In sublevel caves, the percentage of ring ore reporting to different sublevels can be tracked (i.e., primary, secondary, tertiary recovery) and tracer markers can be used to test the code against the results of in-situ marker trials.
Contact us for more information.
This website uses cookies to ensure you get the best experience on our website.
This policy applies to the site www.itasca.com.au (hereinafter the "Site").
A cookie is a small text file in alphanumeric format deposited on the hard disk of the user by the server of the Site visited or by a third party server (advertising network, web analytics service, etc.). When you log on to our Site, we may install various cookies on your device. The cookies we issue are:
In accordance with the regulations, cookies are kept for 13 months.
By browsing our site, you can click on the "social networks" buttons to consult our LinkedIn profile and our YouTube page. By clicking on the icon corresponding to the social network, the latter is likely to identify you. If you are connected to the social network during your navigation on our Site, the sharing buttons allow you to link the contents consulted to your user account. Google, through Google Analytics, places cookies and tracks the site's audience. We can not control the process used by third-party applications to collect information about your browsing on our Site. We invite you to consult their policy of protection of personal data to know their purpose of use and the navigation information they can collect.
When you visit our Site for the first time, a cookies banner will appear indicating the purposes of the cookies. Please note that further navigation on the Site is equivalent to giving your consent to the use of cookies by ITASCA AUSTRALIA. You can choose at any time to adapt the management of cookies according to your preferences, disable them or express a different choice via the means described below. If you refuse the use of cookies, you may no longer have access to a number of features necessary to navigate certain areas of our Site.
For the management of cookies and your choices, each browser offers a different configuration.
For Chrome:
For Internet Explorer 8:
For Internet Explorer 10 and 11:
For FireFox:
For Safari:
For Opera:
According to the GDPR, you have the right to access, rectify, oppose, delete and limit information from cookies and other tracers. You also have the right to withdraw your consent. For this, please contact [email protected].